FV3-LAM-Based CAM Ensemble & Machine Learning Products for the HMT Winter Weather Experiments

Keith Brewster

Nate Snook, Marshall Baldwin, Jun Park, Phillip Spencer, Andrew Berrington, Bryan Carroll & Ming Xue

> Center for Analysis and Prediction of Storms University of Oklahoma Norman, Oklahoma

14th HMT Winter Weather Experiment January 23, 2024

CAPS Ensemble Experiment Goals

- Test FV3 CAM ensemble in quasi-operational winter setting: HMT Winter Weather Experiments
- Generate 15-member CAM ensemble forecast
- Test various physics combinations for possible operational use such as nascent Rapid Refresh Forecast System
- Test and evaluate ensemble consensus methods including Local Probability Matched Mean and Spatial-Aligned Mean
- Develop machine learning (ML) algorithms to create probabilistic rainfall and snowfall forecasts

Real-time 13th WWE (2022-2023) FV3-LAM CAM Ensemble Configuration

- 15 FV3-LAM members
- 3 km grid spacing (GFDL grid)
- 64 vertical levels
- 84-hr forecasts initialized at 00 UTC
- Run at Texas Advanced Computing Center – Frontera
- Total of 30 days run for objective verification and ML training
- Results posted to web: <u>https://caps.ou.edu/forecast/realtime/</u>

FRONTERA

CAPS

13th WWE 2022-23 15 Members

Naming M: Microphysics B: Boundary Layer L: Land Sfc Model PG: GFS Initial/Bndy Cdx PI: Initial perturbations

@A	PS

Experiment	Microphysics	PBL	Surface	LSM	IC/LBC (like system)	Al	
	GFS IC for Baseline Configuration						
M0B0L0_PG	Thompson	MYNN	MYNN	NOAH	GFS /GFS (RRFSv0)	Al-1	
M1B0L0_PG	NSSL	MYNN	MYNN	NOAH	GFS/GFS (WoF)	AI-2	
M0B0L2_PG	Thompson	MYNN	MYNN	RUC	GFS/GFS (RRFS)	AI-3	
M1B2L2_PG	NSSL	TKE-EDMF	GFS	RUC	GFS/GFS (Mixed)		
M0B2L1_PG	Thompson	TKE-EDMF	GFS	NOAHMP	GFS/GFS (GFSv16)	AI-4	
	Physics + IC Perturbation Ensemble						
MOBOLO_PI	Thompson	MYNN	MYNN	NOAH	GEFS_m1		
M0B1L0_PI	Thompson	Shin-Hong	GFS	NOAH	GEFS_m2		
M0B2L1_PI	Thompson	TKE-EDMF	GFS	NOAHMP	GEFS_m3		
MOBOL1_PI	Thompson	MYNN	MYNN	NOAHMP	GEFS_m4		
M0B2L2_PI	Thompson	TKE-EDMF	GFS	RUC	GEFS_m5		
M1B0L0_PI	NSSL	MYNN	MYNN	NOAH	GEFS_m6		
M1B1L0_PI	NSSL	Shin-Hong	GFS	NOAH	GEFS_m7		
M1B2L1_PI	NSSL	TKE-EDMF	GFS	NOAHMP	GEFS_m8		
M1B0L1_PI	NSSL	MYNN	MYNN	NOAHMP	GEFS_m9		
M1B2L2_PI	NSSL	TKE-EDMF	GFS	RUC	GEFS_m10		

24-25 January 2023 Case

24-25 January 2023 Case

10-11 March 2023 Case

10-11 March 2023 Case

Verification

- Precipitation: Stage-4 Precipitation
- Snowfall: NOHRSC Snowfall Analysis
- MET-Plus from DTC is used
 - Areal Coverage Bias
 - Equitable Threat Score
 - Various Thresholds at 30 km neighborhood radius

Verification 24-h Precipitation > 1 mm

Overforecast of precipitation area, varies by member, NSSL generally less biased. ETS scores similar despite differences in bias, ensemble means outperform.

Verification 24-h Precipitation > 25 mm (1-inch)

Less overforecasting at higher threshold, though some bias at 84 h Ensemble means outperform at near-term (36) and especially longer term (84h)..

Verification 24-h Snowfall > 1 mm

Mixed biases, with low bias in NSSL Microphysics members Less difference among ETS scores, ensembles outperform, esp at 86 h

Verification 24-h Precipitation > 75 mm (3-inch)

3-inch biases similar to 1 mm with NSSL microphysics slightly low biased ETS scores similar among members with NSSL having slightly lower due to bias and means outperforming, especially at 84 h

14th WWE 2023-24 11 Members

Naming M: Microphysics B: Boundary Layer L: Land Sfc Model PG: GFS Initial/Bndy Cdx PI: Initial perturbations

	Experimen t	Microphysic s	PBL	Surfac e	LSM	IC/LBC (like system)	Al member
	GFS IC for Baseline Configuration						
	M0B0L0_P	Thompso n	MYNN	MYNN	NOAH	GFS /GFS	AI-1
NIN.	M1B0L0_P	NSSL	MYNN	MYNN	NOAH	GFS/GFS (WoF)	AI-2
114	M0B0L2_P	Thompson	MYNN	MYNN	RUC	GFS/GFS (RRFSm1)	
	M1B2L2_P	NSSL	TKE- EDMF	GFS	RUC	GFS/GFS (RRFSmphys8)	
	M0B2L1_P	Thompson	TKE- EDMF	GFS	NOAHM P	GFS/GFS (GFSv16)	AI-3
	Physics + IC Perturbation Ensemble						
	M0B1L0_P I	Thompson	Shin- Hong	GFS	NOAH	GEFS_m1	
	M0B2L1_P I	Thompson	TKE- EDMF	GFS	NOAHM P	GEFS_m2	
	M0B2L2_P I	Thompson	TKE- EDMF	GFS	RUC	GEFS_m3	AI-4
2	M1B1L0_P	NSSL	Shin- Hona	GFS	NOAH	GEFS_m4	

Machine Learning Component

- Collaboration with NSF AI2ES Institute hosted at OU
- U-Net Convolutional Neural Network (Deep Learning)
- Builds upon ML hail prediction work in HWT (2017-2021) and ML rainfall prediction in HMT FFaIR
- Uses HREF plus 4 CAPS Ensemble Members

U-Net Data/Methods

- Structure for CAPS FV3 Precipitation & Snowfall U-Net:
 - Patch size, number of connections, and number of layers are being evaluated as hyperparameters (architecture shown below may change in later iterations)

U-Net Data/Methods

CAPS U-Net for **Rainfall** uses **23** 2D NWP **forecast variables** relevant to rainfall prediction

Variable	Level(s) Used	
Geopotential height	500 hPa	
Temperature	500, 700, 850 hPa; 2 m AGL	
Dewpoint	500, 700, 850 hPa; 2 m AGL	
u- and v- wind components	500, 850 hPa; 10 m AGL	
6-h maximum reflectivity	1 km AGL	
Precipitable water	column-integrated	
Hourly maximum updraft velocity	column maximum	
6-h accumulated precipitation		
Echo-top height		
CAPE		
Mean Sea Level Pressure		
Terrain height		

<u>U-Net Data/Methods</u>

CAPS U-Net for Snowfall uses 28 2D NWP forecast variables relevant to snowfall prediction

Variable	Level(s) Used
Geopotential height	500 hPa
Temperature	500, 700, 850, 925, 1000 hPa; 2 m AGL
Dewpoint	500, 700, 850, 925, 1000 hPa; 2 m AGL
u- and v- wind components	500 hPa; 10 m AGL
6-h maximum reflectivity	1 km AGL
Precipitable water	column-integrated
Hourly maximum updraft velocity	column maximum
6-h accumulated precipitation	
6-h accumulated snowfall	
Echo-top height	
Mean Sea Level Pressure	
Categorical SNOW, ICEP, FRZR, and RAIN	binary yes/no based on PTYPE at surface

U-Net Data/Methods

New Variables Added to Snowfall U-Net for 2023-24

Vari	able	No	tes/Level(s) Used	
Terrain Mean, Standard	Deviation, Slope	Source: ASTER	Global Digital Elevati	on Model
Vorticity		850 hPa and 5	00 hPa	
Divergence		850 hPa and 5	00 hPa	
Moisture Convergence		850 hPa and 1	0 m AGL	
Land Use Classification		Classifications	: WSSI Land Use Facto	or
	arte Arte			
VES				

New Variables, Examples

Terrain Standard Deviation

New Variables, Examples

Terrain Slopes

New Variables, Examples

0.50

0.25

0.00

S

500mb

-0.25

-0.50

-0.75

-1.00

850 hPa Moisture Divergence

Data/Methods

- Predict: Probability of 6-h snowfall > 1, 2, and 3 inches.
 Look at snowfall amount internally (experimental for 2023-24)
- Truth for training: NOHRSC snowfall analyses
- Patchwise U-Net predictions on 64 x 64 overlapping grid square patches.
 - Patches are stitched together to form the full CONUS prediction
 - Patch overlap & light smoothing reduces discontinuity at patch boundaries
- Ensemble HREF+ probability is calculated from individual member probabilities using NEP (Neighborhood Ensemble Probability) and NMEP (Neighborhood Max Ensemble Probability) methods.

Example Case: 00 UTC 23 Dec 2022 24 h Fcst

Case: 00 UTC 24 January 2023 24h Fcst

Case: 00 UTC 15 March 2023 24h Fcst

CAPS ML Status

- First iteration CAPS HREF+ U-Net for Snowfall prediction performs reasonably, although much room remains for further improvement and refinement.
- The neighborhood maximum ensemble probability (NMEP) configuration appears to be most suitable compared to NEP.
- We will be evaluating the impact of new derived variables and will be refining the ML algorithm
- After the fact we will look at ML for winter 10-m wind speed forecasts in prep for creating impacts guidance (WSSI).
- More details on ML at AI Conference, AMS 2024 (Baldwin et al.)

Conclusions

- All 15 ensemble members appear to capture the spatial patterns of the precipitation rather well.
- For rain/no-rain threshold (≥ 1 mm), all members tend to overforecast for all three lead times.
- For a higher rain threshold (≥ 1 inch), the overforecast appears at longer lead times.
- For both the lower and higher snow thresholds, the NSSL microphysics members (M1*) tend to underforecast, whereas the other members slightly overforecast.
- The ensemble means generally outperform any single ensemble member for both rain and snow (as measured by the ETS).
- Although further work remains, machine learning (ML) provides a viable companion product for producing probabilistic precipitation forecast guidance.
 - CAPS forecast ensemble output (including ML ensemble forecasts): https://caps.ou.edu/forecast/realtime/

Acknowledgments

Computing:

 NSF Texas Advanced Supercomputing Center (TACC) Frontera

reme Science and Engineering

Discovery Environment

Funding:

 NOAA/OAR/OWAC Testbed Grants: NA19OAR4590141 & NA22OAR4590522
 UFS R2O Grant NA16OAR4320115

Contact Info: Keith Brewster kbrewster@ou.edu

Machine Learning Nate Snook <u>nsnook@ou.edu</u>

TACC

FRONTERA