Medium-range Forecasts of Excessive Rainfall with the CSU-MLP

Dr. Aaron J. Hill^{1,2} and Dr. Russ Schumacher³

¹School of Meteorology, University of Oklahoma

²NSF AI Institute for Research on Trustworthy AI in Weather, Climate, and Coastal Oceanography (AI2ES)

³Department of Atmospheric Science, Colorado State University

Acknowledgements: Mitchell Green (UNL) NOAA JTTI Program

HMT Flash Flood and Intense Rainfall Experiment 13 June 2024

Background

- NOAA Weather Prediction Center forecasters routinely issue Excessive Rainfall Outlooks (EROs), indicating regions with the potential for flooding rains across the continental US on days 1-3
- Since 2017, we have developed and tested probabilistic forecasts that apply machine-learning techniques to a reforecast ensemble to help give guidance to WPC forecasters -- a "first guess" when producing these outlooks
- Several versions of the forecast system based on the GEFS are now running operationally at WPC

Schumacher et al. (2021, BAMS)

Real-time forecast graphics:

Background

- In 2022, WPC began issuing experimental day 4-5 EROs – these are now operational
- To support this effort, and to see whether even longer lead times are possible, the CSU-MLP precipitation forecasts have been extended to 8 days, similar to severe weather guidance products (Hill et al. 2023, WAF)
- Q: But is there actual forecast skill at these lead times?
- Q: When and where to forecasts derive skill?

CSU-MLP (v2020, GEFSO) day2 probability of excessive rainfall forecast issued 2021083100 for 24-hr period ending 2021090212 **FIRST GUESS** 0.10 0.15 0.20 0.35 probability WPC ERO essive Rainfall Outloo Risk of rainfall exceeding flash flood guidance Thu Sep 02 202

The Approach

- Data: NOAA's FV3-GEFS Reforecast Dataset (Hamill et al. 2022): 5 members, matches current GEFSv12
- Use many atmospheric fields as predictors, train random forest models over 8 regions
- We use Jan 2003 August 2013 as the training period (~10 yrs)
- Probabilistic forecasts mimic the ERO categories/definitions
- Observations to define excessive rainfall...

See Schumacher et al. (2021); also Herman and Schumacher 2018a,b) for more details

Symbol	Description
APCP	Precipitation accumulation in past (3) 6 h
CAPE	Surface-based convective available potential energy
CIN	Suface-based convective inhibition
MSLP	Mean sea level pressure
PWAT	Total precipitable water
Q2M	Specific humidity two meters above ground
SHR500	Bulk wind difference magnitude between
CHD 850	Bulk wind difference magnitude between
3118030	10 m and 850 hPa
T2M	Air temperature two meters above ground
U10	Zonal component of 10-m wind
UV10	10-m wind speed
V10	Meridional component of 10 m wind

We want to predict excessive rainfall...but what is excessive rainfall?

- A primary motivation for this approach is that forecasters need probabilistic information about the rarity of upcoming rainfall. But...
- We have accepted (if flawed) definitions of tornado, severe hail, severe winds but nothing analogous for excessive rainfall
- Exceeding flash flood guidance (FFG)?
- Produces a flash flood report?
- More than a certain threshold? (and if so, which one(s)?)
- What quantitative precipitation estimate to use?

Two precipitation/impact datasets for training

- "Fixed Frequency" or in other words, we use climatological average recurrence intervals (ARIs) to define a heavy or extreme rain event
 - Better corresponds to actual impacts in a given region than a fixed threshold
 - Doesn't bias the verification statistics toward climatologically wet regions
 - We use the NCEP Climatology-Calibrated Precipitation Analysis (CCPA) to identify historical exceedances of the various average recurrence intervals (1 and 2 yr) for 24-hour rainfall accumulation
- Unified Flood Verification System (Erickson et al. 2019,2021)
 - Local storm reports, exceedances of FFG or the 5-yr ARI for various temporal periods (1-, 3-, 6-, 24-h), and reports of flooding from USGS stream gauges

MLP Prediction System

Good forecast example: 27-28 December 2022 (California flooding) Fixed frequency model

Good forecast example: 27-28 December 2022 (California flooding) Fixed frequency model

Good forecast example: 11-12 June 2023 (Colorado flash flooding)

Good forecast example: 11-12 June 2023 (Colorado flash flooding) Fixed frequency model

CSU-MLP expcp probability forecast & UFVS observations valid 2023061112 - 2023061212

Poor forecast example: 5-6 December 2022

Fixed frequency model

Poor forecast example: 5-6 December 2022

Fixed frequency model

Brier skill score and ROC area, CONUS, by day

• Fixed frequency model displays slightly better skill while UFVS-trained model has better AUROC

Fixed frequency model

Fixed frequency model

Fixed frequency model

Both systems are underforecasting at nearly all probabilistic levels

Hill et al. (2024, in review)

Skill between systems varies regionally and seasonally

Forecasters have noted that the UFVS model tends to be "hotter" in the SE; FF model tends to be "hotter" in the West

(b) UFVS

Variability dominated by training sample differences across the CONUS

FFG – ARI samples in UFVS dataset

More ARI Hill et al. (2024, in review)

Variability dominated by training sample differences across the CONUS

Ablation experiments in which FFG is removed from the UFVS dataset for verification only

Skill is reduced in regions where FFG exceedances are more frequent compared to ARI exceedances

Skill in UFVS-trained system degrades more -> deriving forecast skill from learning on FFG exceedance events

Shift from deterministic to ensemble framework

Shift from deterministic to ensemble framework

Summary and Discussion

The CSU-MLP is moving towards medium-range precipitation predictions to assist WPC operations – appears there is skill out to 6 days in these products

Comprehensive analysis is still in progress as we try to quantify the strengths and weaknesses of longer-range products, their forecast characteristics, and ultimately their value in the forecast process

The future is in ensemble predictions!

One of the most important aspects of AI-based predictions is building trust with end-users (e.g., forecasters) – models and forecasts should be <u>interpretable</u> and <u>explainable</u> \rightarrow FFaIR participation is a big component to building trust and getting user feedback to inform future development

Contact with questions/comments: ahill@ou.edu

MLP real-time forecast graphics: https://schumacher.atmos.colostate.edu/hilla/csu_mlp

